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Abstract

This paper proposes a dynamic longevity risk hedging

strategy for smooth survival benefit profiles of group

self‐annuity (GSA) schemes in the presence of population

basis risk. The fund manager of GSA acts on behalf of

fund participants in selecting the optimal hedge. The

hedging framework is formulated as a mean‐variance
optimization problem, which serves as a theoretical

framework for selecting the optimal hedging strategy.

The hedging mechanism involves trading standardized

longevity‐linked securities dynamically. A semi‐analytic
solution to the optimal hedge ratio is derived, which

enhances the numerical implementation of the strategy.

Furthermore, a risk decomposition method is developed,

enabling hedging of various sources of risks, such as

longevity and investment risks. Numerical illustrations

highlight that the hedging strategy effectively mitigates

variability in survival benefits. Meanwhile, a holistic

risk management framework utilizing the longevity

risk hedging strategy and a target volatility investment

strategy increases the fund's return per unit of risk.
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1 | INTRODUCTION

Life expectancy has been increasing globally, albeit with occasional adverse longevity shocks
such as the COVID‐19 pandemic (World Health Organization, 2024). This upward trend places
increasing pressure on public pension systems, especially with the widespread shift from
defined benefit to defined contribution schemes (Mantilla‐Garcia et al., 2024). Consequently,
retirees have to manage all risks, including longevity, investment, and inflation (Konicz &
Mulvey, 2015; Owadally et al., 2021). This paper focuses primarily on longevity risk while
considering investment risk management as an extension of the hedging framework.

Theoretically, purchasing an annuity is the optimal solution for transferring individual longevity
risk to an annuity provider (Yaari, 1965). However, the annuity market remains underdeveloped
(Brown, 2007), largely due to issues such as adverse selection and capital requirements, which drive
up premiums (Evans & Sherris, 2010; Friedman &Warshawsky, 1990). Additionally, annuities tend
to be illiquid and inflexible, further deterring retirees' demand for them (Hurd, 1989; Pitacco, 2016).

A promising alternative is the pooling of longevity risk. Risk‐pooling products allow
members to convert a lump sum into lifetime income while redistributing the remaining
balance of deceased participants among survivors. Several such products have been proposed,
for example, group self‐annuities (GSAs) (Piggott et al., 2005; Qiao & Sherris, 2013), pooled
annuity funds (Donnelly et al., 2014; Stamos, 2008), and tontines (Chen et al., 2021;
Milevsky, 2014; Milevsky & Salisbury, 2015; Weinert & Gründl, 2021). These arrangements
eliminate the need for insurance premiums and capital reserves, reducing adverse selection and
improving postretirement utility (Chen et al., 2021; Hanewald et al., 2013; Shen et al., 2023;
Valdez et al., 2006). Notable examples include the QSuper Lifetime Pension1 in Australia and
the GuardPath Modern Tontine2 in Canada.

Despite their advantages, risk‐pooling products face two key challenges due to systematic
longevity risk. First, as life expectancy increases, survival payments decrease. Second, these benefits
are volatile due to uncertainty in future mortality rates.3 Strategies such as dynamic pooling (Qiao &
Sherris, 2013) and target volatility investment strategy (Bégin & Sanders, 2024; Li et al., 2022;
Olivieri et al., 2022) can increase the effectiveness of the GSA schemes. This paper extends the
existing literature by proposing a novel dynamic hedging framework that leverages standardized
longevity securities to stabilize GSA survival benefits. Our approach can be generalized to other
pooling schemes (see Remark 3.4) and integrates investment risk management through a risk
decomposition method. Fund managers can implement this hedging framework and target
volatility investment strategies4 concurrently to make benefit profiles more appealing.

1https://qsuper.qld.gov.au/our-products/superannuation/lifetime-pension.
2https://www.guardiancapital.com/investmentsolutions/guardpath-modern-tontine-trust/.
3Additional sources of volatility include unsystematic longevity risk, which arises from small pool sizes, and investment
risk, which stems from fluctuations in the return of the underlying fund (Piggott et al., 2005). We assess the impact of
pool size on hedging effectiveness in Section 4.3.4.
4Section 5 presents several target volatility investment strategies and their integration into a holistic risk management
framework.

2 | SHEN ET AL.

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.70024 by John C

arroll U
niversity, W

iley O
nline L

ibrary on [06/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://qsuper.qld.gov.au/our-products/superannuation/lifetime-pension
https://www.guardiancapital.com/investmentsolutions/guardpath-modern-tontine-trust/


The growing longevity risk transfer market underscores the importance of index‐based
longevity securities (Blake et al., 2019). Since J.P. Morgan and Lucida executed the first q‐forward
transaction in 2008, market participants have increasingly recognized the value of instruments
such as longevity bonds (Blake & Burrows, 2001), longevity swaps (Dowd et al., 2006), q‐forwards
(Coughlan et al., 2007), S‐forwards (Coughlan et al., 2013), K ‐forwards (Tan et al., 2014),
e‐forwards (Denuit, 2009), mortality options (Cairns et al., 2008), survival options (Dowd, 2003),
among others. While extensive research has explored their use in hedging annuity portfolios and
defined benefit pension plans (Cairns, 2011, 2013; Li & Hardy, 2011; Li & Luo, 2012; Tan
et al., 2022; Wong et al., 2017; Zhou & Li, 2017, 2019), their application to longevity pooling
products remains largely unexplored.

Index‐based longevity securities offer cost‐effective hedging solutions and enable dynamic
risk management. However, they are limited by the population basis risk, which is the mis-
match between the hedged population and the reference population of the securities
(Blake, 2018; Cairns et al., 2014; Coughlan et al., 2011; Li & Hardy, 2011; Lin et al., 2014; Rosa
et al., 2017; Tan et al., 2022; Zhou & Li, 2017, 2019). Among the available instruments,
longevity swaps are the most widely traded (Blake et al., 2019), with a cumulative transaction
volume of US $250 billion as of December 20235 (see Figure 1). In this paper, we use the
S‐forward, which is the basic building block for a longevity swap, to hedge against an
unexpected change in mortality to preserve a more stable income for the GSA members in the
presence of population basis risk.

The hedging framework for longevity risk can be categorized into three types: static,
continuous‐time dynamic, and discrete‐time dynamic hedging. Static hedging involves
setting up a portfolio at the beginning and holding it unchanged (Cairns, 2013; Li &
Hardy, 2011; Ngai & Sherris, 2011; Sherris et al., 2020). Static hedging is easy to implement
but lacks adaptability and requires index‐based longevity securities with a long time‐to‐
maturity to match the duration of the hedged position. Continuous‐time dynamic hedging
allows continuous rebalancing (Biagini et al., 2016, 2013; Dahl et al., 2008; Dahl &
Møller, 2006; Wong et al., 2014, 2017), yet it is impractical due to the need for frequent
trades. The third approach, discrete‐time dynamic hedging (Cairns, 2011, 2013; Luciano
et al., 2012; Rosa et al., 2017; Tan et al., 2022; Zhou & Li, 2017, 2019), periodically adjusts
the portfolio (e.g., annually). This method balances flexibility and feasibility, and is typi-
cally based on mortality models from the Lee‐Carter (Lee & Carter, 1992) or Cairns–
Blake–Dowd (Cairns et al., 2006) families. Given practical considerations, we adopt a
discrete‐time dynamic hedging approach for GSAs.

To account for population basis risk, we adopt a multi‐population mortality model6

proposed in Li and Lee (2005). We show that, due to the payout structure of GSAs and the risk
premium charged on the S‐forwards, hedging introduces a mean‐variance trade‐off for fund
members: while variance reduction stabilizes benefits, it also lowers expected payouts.
Therefore, the hedging objective is to optimize this trade‐off. To achieve this, we construct a
one‐step‐ahead hedging strategy (Alizadeh et al., 2008) that aligns with the economic interests
of GSA members. We derive semi‐closed‐form solutions for the mean‐variance set and the
optimal hedge ratio, allowing fund managers to select an efficient portfolio of S‐forwards and

5Data source: https://www.artemis.bm/longevity-swaps-and-longevity-risk-transfers/.
6Some other multi‐population models include the multi‐population Lee‐Carter (M‐LC) model (Cairns et al., 2011), the
multi‐population Cairns–Blake–Dowd (M‐CBD) model (Li et al., 2015), and the common age effect model
(Kleinow, 2015), among others.
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the GSA fund from the efficient set. The efficient set is conceptually similar to the capital
market line in portfolio selection theory (Markowitz, 1952), where investors choose between
risk‐free assets and a market portfolio. We measure the effectiveness of the hedge through the
variance reduction ratio (VRR) (Li & Hardy, 2011; Tan et al., 2022; Zhou & Li, 2017), which
quantifies how the hedge can remove the variance of survival payments. The cost of the hedge
is captured by the mean reduction ratio (MRR), which measures the extent to which the hedge
decreases the expected survival benefit.

Numerical analysis reveals that: (i) fund members select the hedging strategy from the
efficient set, which is the upper curve of the parabola; (ii) more risk‐averse members prefer
strategies closer to the global minimum variance point (GMVP); (iii) a significant proportion of
longevity risk can be eliminated by implementing our dynamic hedging framework; (iv) the
hedge provides a net gain to members, with benefits exceeding the associated cost. Sensitivity
analysis confirms that the effectiveness of the dynamic hedge is robust to the S‐forwards'
reference age and time‐to‐maturity, the hedger's population, interest rate risk, the pool size of
the GSA, and model risk. Additionally, we propose a risk decomposition method to jointly
manage longevity and investment risks, improving return per unit of risk relative to standalone
investment risk management strategies.

This paper makes three key contributions. First, while longevity hedging strategies have been
extensively studied for annuity portfolios, this paper is the first to apply standardized index‐based
longevity securities to risk‐pooling products. The semi‐analytic solutions facilitate practical
implementation. Second, we introduce a novel risk decomposition method that enables fund
managers to quantify and manage different sources of risks, including longevity and investment
risks. Third, we show that several target volatility strategies proposed in literature (Doan
et al., 2018; Li et al., 2022; Olivieri et al., 2022) are mathematically equivalent.

The remainder of this paper is structured as follows: Section 2 presents the model setup,
including the mortality model, the GSA, and the S‐forward. Section 3 formulates the dynamic
hedging problem and provides semi‐analytic solutions. Section 4 provides numerical results and
robustness checks. Section 5 extends the framework to incorporate investment risk. Concluding
remarks are presented in Section 6. Appendices contain proofs, computational methods, and
parameter estimates.

FIGURE 1 The cumulative amount of longevity swap transactions in US$ billion since 2008. Data source:
https://www.artemis.bm/longevity-swaps-and-longevity-risk-transfers/. [Color figure can be viewed at
wileyonlinelibrary.com]
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2 | MODEL SETUP

We fix the probability space (Ω, , ) equipped with a right‐continuous, ‐completed filtration
 ≔ t T[0, ], where T is the maximum remaining life span of a person aged x at time zero.
Let ξ ζ ζ{ϵ , ϵ , , , }x t

F
x t
R

t t
F

t
R

t T,
( )

,
( ) ( ) ( )

[0, ] be a sequence of mutually independent and identically distrib-

uted (IID) normal random variables with zero mean and constant variances on  (Ω, , , ),
which will be used to describe the mortality dynamics in Section 2.1. Let W W{ , }t t t T

1 2
[0, ] be a

pair of independent standard Brownian motions on  (Ω, , , ), which will be used to describe
stock dynamics in Section 5. In this paper, we assume that the financial market and human
mortality are independent (Feng et al., 2025), that is, ξ ζ ζ{ϵ , ϵ , , , }x t

F
x t
R

t t
F

t
R

t T,
( )

,
( ) ( ) ( )

[0, ] and

W W{ , }t t t T
1 2

[0, ] are mutually independent. In Sections 2–4, we focus on the systematic longevity

risk and assume that the fund of the risk‐pooling products is fully invested in a risk‐free bank
account. We relax this assumption and allow for investment risk in Section 5.

2.1 | The mortality model

The hedging framework requires a stochastic mortality model to derive the optimal hedge ratio.
Cairns (2011) adopts a single population setup and uses the Cairns–Blake–Dowd mortality
model (Cairns et al., 2006) in hedging a portfolio of annuity liabilities. In this paper, we use the
augmented common factor (ACF) model proposed in Li and Lee (2005) and assume two
populations. The reference population, R, is the total population, and the hedging population is
denoted as F . The hedging population is the book population of the risk‐pooling products. It
can be a sub‐population of Population R or another population resembling similar mortality
trends. The book population (Population F ) aims to hedge the systematic longevity risk.

Let mx t
i
,
( ) be the central death rate for Population i at time t , where ∈i F R{ , }. In the ACF

model, Population i's mortality rate mx t
i
,
( ) is determined as:

( )m a G K g klog = + + + ϵ ,x t
i

x
i

x t x
i

t
i

x t
i

,
( ) ( ) ( ) ( )

,
( ) (1)

where ax
i( ) is the average mortality rate for an individual aged x from Population i K, t and kt

i( )

are time‐varying indices describing the mortality trend for both populations and Population i
respectively, Gx and g

x
i( ) are shape parameters to reflect the sensitivity to the time‐varying

indices for age x , and ϵx t
i
,
( ) is the error term modeled by IID normal random variables. The time‐

varying indices and shape parameters are subject to the following constraints to guarantee the
identifiability of the ACF model:

 
 
G g

K k

= = 1,

= = 0.

x

x

x
x
i

t

t

t
t
i

( )

( )

In the ACF model, G Kx t is the common factor for the two populations, and g k
x
i

t
i( ) ( ) is the

specific factor for Population i. The mortality rates between the two populations are correlated
through the common factor. However, the correlation is not perfect, as there is a specific factor
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for each population. We use an index It to measure the population basis risk (Zhou & Li, 2017),
which is defined as:

≔
( )

I
g k

G K

Var

Var ( )
.t

t x t
F

t
F

t x t t

+
( )

+1
( )

+ +1

The index It measures the imperfect correlation and quantifies the relative importance of
the population‐specific factor of the book population in the ACF model.

Following Li and Lee (2005), we assume that the time‐varying index Kt for both populations
follows a random walk with drift and the time‐varying index kt

i( ) for Population i follows a
first‐order autoregressive process:

K C K ξ= + + ,t t t−1 (2)

k ϕ ϕ k ζ= + + ,t
i i i

t
i

t
i( )

0
( )

1
( )

−1
( ) ( ) (3)

where C ϕ, i
0
( ), and ϕ i

1
( ) are constants, ξ{ }t is a sequence of IID normally distributed random

variables with zero mean and constant variance σK
2 , and ζ{ }t

i( ) is a sequence of IID normal

random variables with zero mean and constant variance σk i,
2 . We require ϕ < 1i

1
( ) , so that the

time‐varying indices k{ }t
i( ) are stationary and the projected mortality for the two populations

does not diverge to infinity over time. From Equations (2)–(3), the time‐varying indices K{ }t and
k{ }t
i( ) are Markov processes, whose expected future values depend only on their current values

but not on past observations.

2.2 | Group self‐annuity

In this subsection, we introduce the fund process of a group self‐annuity (GSA) and explain
why the participants in the GSA pool are willing to hedge systematic longevity risk. The fund
members are from the book Population F .

First, we introduce some notation for survival probabilities. Let qx t
i
,
( ) be the probability that

an individual aged x in Population i at time t − 1 dies during the period t t[ − 1, ), which is
determined as:

( )q m= 1 − exp − ,x t
i

x t
i

,
( )

,
( )

wheremx t
i
,
( ) is the central death rate in the ACF model in Equation (1). Let S s( )x t

i
,
( ) be the survival

probability that an individual aged x in Population i at time t survives to time t s+ and this is
denoted as:

 ( )S s q( ) = 1 − .x t
i

j

s

x j t j
i

,
( )

=1
+ −1, +
( )
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Here, the survival probability S s( )x t
i
,
( ) is random and is not observable until time t s+ . The

randomness comes from the error terms ξ ζ ζ{ , , }t t
F

t
R( ) ( ) in the ACF model. Due to the Markov

property of the processes K k{ }, { }t t
F( ) and k{ }t

R( ) , we have

 ≔


  






  


( )p s K k S s S s K k, , ( ) = ( ) , ,x t

i
t t

i
x t
i

t x t
i

t t
i

,
( ) ( )

,
( )

,
( ) ( ) (4)

where px t
i
,
( ) is the spot survival probability that an individual aged x in Population i at time t

survives to time t s+ .
We consider a homogeneous GSA pool consisting of n members initially aged x with each

member contributing a lump sum of c to the fund, and assume that the GSA fund invests in
risk‐free bank accounts. The GSA fund evolves as follows (Piggott et al., 2005; Qiao &
Sherris, 2013):

N N S= (1),t t x t t
F

−1 + −1, −1
( ) (5)

N N NΔ = − ,t t t−1

F F r= (1 + ),t t
f−

−1
+

B
F

a N
=

¨
,t

t

x t t
e

t

−

+ ,
(6)

D β
F

N
= ,t

t

t

−

−1
(7)

F F B N D N= − − Δ .t t t t t t
+ −

The notations in the above GSA fund dynamics are defined as follows:

• Nt is the number of surviving members at time t with N n=0 , and NΔ t is the number of
deaths during t t[ − 1, );

• Ft
− is the fund value at time t just before the benefit payment with F nc=0

− , and Ft
+ is the

fund value at time t just after the benefit payments;
• r f is the fixed risk‐free interest rate;
• Bt is the GSA survival benefit per member at time t , and äx t t

e
+ , is the annuity factor taking

account of future mortality improvement;
• Dt is the GSA death benefit per member who dies during t t[ − 1, ), and β is the death benefit
payment ratio.

In Equation (6), the annuity factor is determined as:

∞ ( )a r p s K k¨ = (1 + ) , , .x t t
e

s

f s
x t t
F

t t
F

+ ,
=0

+
−

+ ,
( ) ( ) (8)
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We assume that m m=x t t, 99, for ≥x 100 in the calculation of the annuity factor. At each

payment date, the annuity factor is updated based on the latest information { }K k,t t
F( ) in the

ACF model. By including future mortality improvements, the expected declining trend of the
GSA survival payment could be reduced (Qiao & Sherris, 2013). For the GSA design, we also
incorporate death payment in Equation (7) to meet individuals' bequest motives. As noted in
Olivieri et al. (2022), we require ≤ β0 < 1 so that the individual longevity risk is shared within
the GSA fund. If β = 1, a member's share of fund value will be fully distributed upon the
member's death, and the participants bear all longevity risks themselves. As a result, the GSA
fund becomes a pure financial arrangement.

Increasing the pool size can reduce idiosyncratic longevity risk and smoothen the
survival benefits of GSA. However, increasing the pool size cannot manage the systematic
longevity risk for the group (Qiao & Sherris, 2013). This is because when there is an
unexpected systematic improvement in mortality, the life expectancy of all members is
expected to increase. In Equation (5), we consider a large pool size so that there is no small
sample risk, and the idiosyncratic longevity risk is fully diversified since the research focus
is hedging the systematic longevity risk. To test the robustness of the hedging strategy,
we perform a sensitivity analysis of hedge effectiveness on the size of the GSA pool in
Section 4.3‐4.

The systematic longevity risk causes the survival benefits of a GSA pool to be volatile. If the
1‐year survival probability S (1)x t t

F
+ −1, −1
( ) or the annuity factor äx t t

e
+ , increases unexpectedly, the

GSA benefit payment Bt will decrease. For this reason, fund members are interested in hedging
against unexpected mortality improvements in the future. In addition, the survival benefit Bt is
random due to the randomness of the annuity factor äx t t

e
+ , and the 1‐year survival probability

S (1)x t t
F
+ −1, −1
( ) . Hedging against an unexpected change in mortality can reduce benefit volatility.

2.3 | S‐forward

In this subsection, we introduce one type of mortality‐linked instrument: S‐forward. We show
how to use S‐forwards to hedge longevity risk in the next section.

An S‐forward is a combination of a swap and a zero‐coupon bond. It is issued on a reference
population, and its value is linked to the survival rate of the reference population during a
predetermined period. For the swap component, as reflected in Figure 2, two parties will
exchange the fixed survival probability and the realized survival probability at maturity. The
fixed‐rate payer pays the notional amount times the predetermined fixed survival probability to
the floating‐rate payer. The floating‐rate payer pays the notional amount times the realized
survival probability to the floating‐rate payer. The fixed survival probability is agreed by the two
parties at the inception of the S‐forward. There is no initial cashflow for the two parties when
initiating the S‐forward contract. The S‐forward is also a zero‐coupon bond as it only generates
one cashflow at maturity.

Consider an S‐forward linked to the Population R aged xf . For the S‐forward issued at time

t with a time‐to‐maturity T*, its value depends on the reference survival probability S T( *)
x t
R
,

( )
f .

In practice, the floating‐rate payer typically requires a risk premium to accept longevity risk.
Let ≥λ 0 be the risk loading parameter and pt

f be the forward survival probability at inception,
we have

8 | SHEN ET AL.
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≔


  


p λ S T K k(1 + ) ( *) , .t

f
x t
R

t t
R

,
( ) ( )
f

From the fixed‐rate payer's perspective, let P t( )s be the value of the S‐forward per $1
notional at time s, where ≥s t . Then P t( )s can be expressed as:

≔


  


{ }P t r S T K k p( ) (1 + ) ( *) , − .s

f T t s
x t
R

s s
R

t
f−( *+ − )

,
( ) ( )
f (9)

From Equation (9), we have ≤P t( ) 0t
7 and P t( )s is random after inception and before the

maturity date t T+ *. After inception, the value of the S‐forward may become positive
or negative depending on the realized mortality over time. If there is an unexpected
mortality improvement, the expected survival probability increases, the value of the
S‐forward increases, and the fixed‐rate payer earns a profit. In contrast, if there is an
unexpected increase in mortality, the expected survival probability decreases, the value of the
S‐forward decreases, and the fixed‐rate payer incurs a loss. One important result is that
the expected return of a fairly priced (i.e., λ = 0) S‐forward is zero for the two parties.
This result is natural since there is no cost to enter into the S‐forward. In contrast, if a risk
premium is charged, the expected return of an S‐forward is negative from the fixed‐rate
payer's perspective, as shown in Proposition 2.1.

Proposition 2.1. For a fairly priced S‐forward, that is, when λ = 0, we have
 ≥P t s t[ ( )] = 0, fort s , where   ⋅ ≔ ⋅[ ] [ ]t t . If a risk premium is charged by the
floating‐rate payer (i.e., λ > 0), then  ≥P t s t[ ( )] < 0, fort s .

Proof. See Appendix A.1. □

In the following, we will adopt the same notation for conditional expectation as in
Proposition 2.1 for convenience. For example, given the filtration at time ⋅ ≔ ⋅t, Var [ ] Var[ ]t t

is the conditional variance, ⋅ ≔ ⋅Std [ ] Std[ ]t t is the conditional standard deviation,
⋅ ⋅ ≔ ⋅ ⋅Cov [ , ] Cov[ , ]t t is the conditional covariance, and ⋅ ⋅ ≔ ⋅ ⋅Corr [ , ] Corr[ , ]t t is the condi-

tional correlation coefficient.

FIGURE 2 Settlement of an S‐forward contract at maturity. The fixed‐rate payer will make payments to the
floating‐rate payer based on an initially agreed fixed survival probability, to receive back payments based on the
realized survival probability.

7Although the initial value P t( )t from the fixed‐rate payer's perspective is non‐positive, no cashflow is exchanged at
inception of the S‐forward. A single cashflow occurs at maturity or when the position is closed through offset trading
before maturity, as explained in Remark 3.3.
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3 | THE OPTIMAL HEDGING FRAMEWORK USING
S‐FORWARD

As detailed in Section 2.2, GSA members are willing to hedge against an unexpected mortality
change to smoothen the GSA survival payments. By construction, the GSA survival payments
are a series of cashflows, but the S‐forwards only generate one cashflow at maturity. Due to the
different nature of the cashflows, using only one S‐forward to hedge the systematic longevity
risk for the GSA members is inadequate. Therefore, it is natural to consider a dynamic hedging
strategy that periodically rebalances the hedging portfolio to match the cashflow on each
survival payment date. This type of dynamic hedging strategy is commonly used in literature;
see, for example, Zhou and Li (2017) and Tan et al. (2022).

In this paper, we assume that the GSA benefits are paid annually.8 We consider a yearly
rolling hedging strategy accordingly, which keeps structuring S‐forwards at the beginning of
each year and closing out the S‐forwards at the end of each year. All the S‐forwards used in
this hedging strategy are linked to the Population R and age xf , and their time‐to‐maturities
are T*. The GSA fund is the fixed‐rate payer of the S‐forwards. One key feature of the
dynamic hedging strategy is that the fund periodically rebalances the hedging portfolio
according to the most up‐to‐date information. More specifically, the yearly rolling hedging
strategy works as follows:

• At time t = 0, the fund enters into an S‐forward contract as the fixed‐rate payer with a
notional amount h0 according to the most up‐to‐date mortality information 0.
The S‐forward is issued on the reference population aged x f at time zero with
time‐to‐maturity T*.

• At time t = 1, the fund closes out the previous S‐forward contract. The realized hedging
profit or loss is h P (0)0 1 .

• At time t = 1, the fund enters into a new S‐forward contract as the fixed‐rate payer with a
notional amount h1 according to the most up‐to‐date mortality information 1.
The new S‐forward is issued at time t = 1 on the reference population aged x f with
time‐to‐maturity T*.

• The fund continues to rebalance the hedging portfolio in the same way until maturity.

Figure 3 presents a step‐by‐step illustration of the yearly rolling hedging strategy.
By implementing the dynamic hedging strategy, the total survival benefit per member Bt

H
+1
( )

is determined as:

B B
h P t

N
B

h P t

N S
= +

( )
= +

( )

(1)
,t

H
t

t t

t
t

t t

t x t t
F+1

( )
+1

+1

+1
+1

+1

+ ,
( ) (10)

where the realized profit or loss from the S‐forward, h P t( )t t+1 , is equally distributed among all
surviving members. From Equation (9), the hedging profit or loss of the fixed‐rate payer per $1
notional at time t + 1 is expressed as:

8Existing risk‐pooling arrangements include the QSuper Lifetime Pension in Australia and the GuardPath Modern
Tontine in Canada have an annual benefit payment frequency.
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

















{ }
{ }

P t r S T p

r S S T p

( ) = (1 + ) ( *) −

= (1 + ) (1) × ( * − 1) − .

t
f T

t x t
R

t
f

f T
x t
R

t x t
R

t
f

+1
−( *−1)

+1 ,
( )

−( *−1)
,

( )
+1 +1, +1

( )

f

f f

(11)

Remark 3.1. We assume that an S‐forward indexed to the fund population does not
exist in the market, since the fund population F is usually a sub‐population. A mortality‐
linked instrument indexed to a small population is less attractive in the capital market.
To increase the liquidity of the mortality‐linked instruments, S‐forwards are generally
indexed to a whole population. This paper assumes that the S‐forwards are indexed to the
total population R. In the ACF model, the mortality experience between the two
populations is correlated, but the correlation is not perfect. Thus, there is a population
basis risk for the longevity hedge.

Remark 3.2. To hedge longevity risk, the GSA fund should be the fixed‐rate payer of the
S‐forwards, that is, ht needs to be positive. When there is an unexpected mortality
improvement, from Equation (6), we know that the survival payment will decrease due to
the increase in the annuity factor and the number of survival members. Since the
mortality experience between the two populations is correlated, the reference population
of the S‐forwards is also likely to have a mortality improvement. From Equations
(10)–(11), the hedging profits from the S‐forwards will increase. As the hedging profits
are equally distributed among surviving members, they could partially offset the decrease
in the GSA survival payment.

In contrast, when there is an unexpected mortality increase, the survival payment will
increase due to the decrease in the annuity factor and the number of survival members.
Since the mortality experience between the two populations is correlated, the reference
population of the S‐forwards is also likely to have a mortality increase. Then the hedging
profits from the S‐forwards will decrease, and they could partially offset the increase in
the GSA survival payment.

FIGURE 3 The yearly rolling hedging strategy. The GSA fund is the fixed‐rate payer of the S‐forwards and it
keeps rebalancing the hedging portfolio annually. GSA, group self‐annuities.

SHEN ET AL. | 11
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In either case, the position as the fixed‐rate payer of the S‐forwards could hedge
against an unexpected mortality change in the fund population to smoothen the GSA
survival payments.

Remark 3.3. In practice, due to the nature of longevity risk, annuity providers and
pension funds require long‐dated hedging instruments to match the duration of their
liability. Short‐dated hedging instruments provide limited exposure to long‐term
longevity risk and are mostly sensitive to short‐term mortality shocks. In contrast,
long‐dated hedging instruments capture the cumulative survival probability over a
horizon, which reflects the structure of pension and annuity liabilities. In our framework,
while the S‐forward contract has a fixed contractual maturityT* > 1, it is closed annually
through offset trading. At the beginning of each year, a new S‐forward is entered into. At
the end of the year, its mark‐to‐market value is realized through a closing offset
transaction with the same maturity structure. This rolling mechanism is conceptually
analogous to the dynamic management of futures contracts9 in financial markets (Hull &
Basu, 2016). This allows the fund manager to dynamically rebalance the hedge in
response to evolving longevity expectations. Although the contract does not reach
maturity, its value reflects the market's updated view of future survival probabilities,
making it an effective tool for hedging systematic longevity risk. Several other studies use
the same assumption that an active trading market for longevity‐linked securities is
available, for example, Zhou and Li (2017), Tang and Li (2021), and Tan et al. (2022).
The assumed existence of such mark‐to‐market values and the ability to close positions
each year is a theoretical simplification designed to evaluate the hedge's potential under
perfect market conditions.

Remark 3.4. Our hedging framework is general and applies to other mortality pooling
products, for example, the tontine scheme (Chen et al., 2021; Milevsky, 2014; Milevsky &
Salisbury, 2015; Weinert & Gründl, 2021). Unlike the GSA fund in Equation (6), the total
survival payment at time t in a tontine scheme is predetermined to make the tontine
design actuarial fair. The total survival payment is equally distributed among all
surviving members. As a result, the benefit per member is volatile due to the systematic
longevity risk. Similarly, the fund manager of a tontine can use the dynamic hedging
framework to smoothen benefits.

Since the expected return of an S‐forward is non‐positive, an immediate property of Bt
H
+1
( ) is

given in the following proposition:

Proposition 3.5. Under the assumption that G > 0x in the ACF model,10 if h > 0t , then
 ≤B B[ ] [ ]t t

H
t t+1

( )
+1 ; otherwise, if h < 0t , then  ≥B B[ ] [ ]t t

H
t t+1

( )
+1 .

9In this paper, we follow the literature in using the term “S‐forwards” instead of “S‐futures”. However, they are traded
as futures.
10This is not an unrealistic assumption. Many studies show that life expectancy has significantly improved during the
past millennium, for example, Li et al. (2020). We will also confirm this assumption in our numerical study in
Appendix E.
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Proof. See Appendix A.2. □

We aim to identify the optimal hedging strategy over a set of admissible strategies that
satisfy the following assumptions.

Definition 3.6. A triplet 














( )h B B, Var ,t t t

H
t t

H
+1
( )

+1
( ) is called an admissible strategy at

time t if

•






h B, Vart t t

H
+1
( ) , and 







Bt t

H
+1
( ) are t‐measurable;

•






h B, Vart t t

H
+1
( ) , and 







Bt t

H
+1
( ) take values in  , +, and , respectively.

Proposition 3.5 asserts that if GSA members hedge against the systematic longevity risk to
smoothen the survival benefits, the expectation of survival benefits will decrease. In contrast,
if the GSA members' objective is to increase the expectation of the survival payment, the fund
can be the floating‐rate payer of the S‐forwards and the variance of the survival payments
will increase. Thus, there is a mean‐variance trade‐off, which can be described by the
mean‐variance set in the following definition.

Definition 3.7. The mean‐variance set of the hedge at time t is the collection of the
tuple B B(Var [ ], [ ])t t

H
t t

H
+1
( )

+1
( ) among all admissible strategies. The global minimum

variance hedging strategy achieves the GMVP on the mean‐variance set, which has the
minimum variance among all admissible hedging strategies.

Proposition 3.8. Given the latest information at time t , which is { }F N K k k, , , ,t t t t
F

t
R+ ( ) ( ) ,

the mean‐variance set of the longevity hedge can be expressed as:

 






















( )B A B A B AVar = + + ,t t

H
t t t

H
t t t

H
t+1

( )
1, +1

( )
2

2, +1
( )

3,

where




 































































A
P t

S

P t

S

A A A B

A B A B A B

A B
P t

S

P t

S

= Var
( )

(1)

( )

(1)

= 2( − [ ]),

= Var [ ] − 2 [ ] + ( [ ]) ,

= Cov ,
( )

(1)

( )

(1)
.

t t
t

x t t
F t

t

x t t
F

t t t t t

t t t t t t t t t

t t t
t

x t t
F t

t

x t t
F

1,
+1

+ ,
( )

+1

+ ,
( )

−2

2, 4, 1, +1

3, +1 4, +1 1, +1
2

4, +1
+1

+ ,
( )

+1

+ ,
( )

−1

The GSA fund can achieve the GMVP on the mean‐variance set following the global
minimum variance hedging strategy:
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≔







 








h
P t

N
B

B
−Corr

( )
,

Std [ ]

Std
.t t

t

t
t

t t

t
P t

N

(GMVP) +1

+1
+1

+1

( )t

t

+1

+1

(12)

Proof. See Appendix A.3. □

The global minimum variance hedging strategy in Equation (12) has the same structure as
the minimum variance hedge ratio in the finance literature when the underlying asset of the
hedging instrument differs from the asset to be hedged. The population basis risk has the same
interpretation as the cross‐hedging risk, which comes from the imperfect correlation between
the two assets. As we explain in Remark 3.2, the correlation coefficient between P t

S

( )

(1)

t

x t t
F

+1

+ ,
( )

and Bt+1

is negative, so the global minimum variance hedge ratio is positive. We make the following
definition in terms of the GSA members' risk preferences:

Definition 3.9. When h > 0t , a longevity hedging strategy is called a risk‐mitigating
strategy; when h < 0t , a longevity hedging strategy is called a risk‐seeking strategy; when
h = 0t , the GSA members are risk‐neutral to systematic longevity risk.

We follow Alizadeh et al. (2008) to construct a one‐step ahead hedging strategy and assume
that the fund manager aims to solve the following mean‐variance optimization problem for the
members in each step:

 


 ≔
∈

 













{ }( )V h B ϕ B Bmin ( ) Var − 2 − [ ] ,

h
t t t t t

H
t t t

H
t t+1

( )
+1
( )

+1
t

(13)

where V h( )t t t is the value function and the parameter ≥ϕ ( 0)t controls the mean‐variance
trade‐off.

Remark 3.10. A one‐step ahead hedging framework is suitable for our research context,
as the mortality data of a whole population is usually published annually. We observe the
time‐varying indices K{ }t and k{ }t

i( ) in the ACF model on an annual basis. However, a

continuous dynamic hedging framework would require the whole population's mortality
information continuously.

Remark 3.11. Alizadeh et al. (2008) propose a one‐step ahead hedging strategy for
energy commodities using futures based on a risk minimization objective, assuming that
futures follow a martingale process. As a result, the expected returns from the hedged
portfolio will not change, and the minimum variance hedge ratio is equivalent to the
utility‐maximizing hedge ratio (Kroner & Sultan, 1993). However, in this paper, as shown
in Proposition 3.5, the expected returns from the hedged portfolio are affected by the
number of S‐forwards held. Therefore, we consider the utility‐maximizing hedging based
on the economic benefits of the members. At each rebalancing date, the mean‐variance
objective is related to the GSA survival benefit at the next rebalancing date. Our problem
formulation is natural since the main objective of the GSA fund is to share idiosyncratic
longevity risk and provide lifetime income rather than to pay a large amount of death
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benefit. Note that  B[ ]t t+1 is a known constant at time t and does not affect the optimal
hedge ratio. In the formulation in Equation (13), we subtract the conditional mean of the
unhedged benefit to better present the numerical results in Section 4.

The optimal semi‐analytic solution to the mean‐variance optimization problem is presented
in the following proposition:

Proposition 3.12. The optimal hedge ratio h*t to the optimization problem in Equation
(13) is expressed as:

























( )h F N K k k ϕ
ϕ B

* , , , , , =
− Cov ,

Var
.t t t t t

F
t
R

t

t t
P t

N t
P t

N t

t
P t

N

+ ( ) ( )

( ) ( )
+1

( )

t

t

t

t

t

t

+1

+1

+1

+1

+1

+1

(14)

A necessary condition to guarantee that the hedging strategy is risk‐mitigating is

≔( )ϕ ϕ F N K k k A< , , , , ,t t
RN

t t t t
F

t
R

t
( ) + ( ) ( )

4, (15)

where ϕt
RN( ) the risk‐neutral (mean‐variance) trade‐off parameter.

Proof. See Appendix A.4. □

Remark 3.13. The semi‐closed‐form solution of h*t in Equation (14) requires Monte
Carlo simulation to numerically evaluate the conditional mean, variance, and covariance
at time t . From Equation (11), P t( )t+1 is a conditional expectation at time t + 1.
Evaluating h*t requires the nested Monte Carlo method: first, simulate M1 mortality paths
from t to t + 1 to evaluate Bt+1 and Nt+1; second, simulate M2 conditional mortality paths
for each of the M1 mortality paths to evaluate P t( )t+1 . The nested Monte Carlo method is
computationally intensive. We use the approximation method for the spot survival
probability in Cairns (2011) and Zhou and Li (2017) to avoid nested Monte Carlo and to
make the dynamic hedge framework more practical. More specifically, in the second step
of the nested Monte Carlo method, we directly approximate the spot survival probability
at time t + 1 to avoid further simulating the M2 conditional mortality paths. Appendix B
presents the approximation method.

By definition, ϕt
RN( ) is determined to make a GSA member risk‐neutral to the systematic

longevity risk. A hypothetical member with a mean‐variance trade‐off parameter ϕt
RN( ) is

indifferent in hedging the systematic longevity risk or not. In the formulation of the mean‐
variance optimization problem in Equation (13), a large value of ϕt indicates that GSA members
put more weight on maximizing the expectation. An individual with a mean‐variance trade‐off
parameter ϕ ϕ<t t

RN( ) is willing to hedge the systematic longevity risk. A higher risk‐neutral
trade‐off parameter, ϕt

RN( ), implies a wider set of ϕt to yield a risk‐mitigating strategy, and
members are more willing to hedge longevity risk. Therefore, ϕt

RN( ) measures the willingness of
a GSA member to hedge the systematic longevity risk.
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When we plot the standard deviation of Bt
H
+1
( ) on the horizontal axis and the mean on the

vertical axis, the mean‐variance set shows a parabolic shape as presented in Figure 4.
The mean‐variance set shows the mean‐variance trade‐off: if members are willing to hedge the
systematic longevity risk to reduce the variance, the mean also decreases. The mean‐variance
set is closely connected to modern portfolio selection theory (Markowitz, 1952). The upper part
of the mean‐variance set is the efficient set, on which the fund manager chooses the optimal
hedge ratio based on the GSA members' risk preferences, while the lower part represents the
inefficient set. It is not optimal to select a hedging strategy on the inefficient set, since it has a
lower return given the same level of risk. The dotted line is the risk‐neutral line when
ϕ ϕ=t t

RN( ). When members are risk‐neutral, the fund manager selects the point without hedge
on the efficient set, which can be viewed as the “market portfolio” in portfolio selection theory.
When members are risk‐averse, the fund manager will choose a positive hedge ratio (long
S‐forward) in the risk‐averse region, which lies to the left of the risk‐neutral line. In contrast,
when members are risk‐seeking, the fund manager will choose a negative hedge ratio (short
S‐forward) in the risk‐seeking region, which lies to the right of the risk‐neutral line. Likewise,
when investors select the optimal portfolio on the capital market line, risk‐averse investors
invest in both risk‐free assets and the market portfolio, and risk‐seeking investors borrow money
at the risk‐free interest rate to invest in the market portfolio to achieve a higher expected return.
In the longevity hedge, S‐forwards play a role similar to risk‐free assets in portfolio selection
theory. In deriving the mean‐variance set, we assume that only one S‐forward is available in the
capital market. It is worthwhile to consider using a different or a combination of S‐forwards
(with a different reference age or time‐to‐maturity) to achieve a better mean‐variance trade‐off.
This is out of the scope of this paper and is left for future research.

In this paper, we assume that members are risk‐averse and the mean‐variance trade‐off
parameter is proportional to the risk‐neutral trade‐off parameter as:

≔ϕ α ϕ(1 − ) ,t t
RN( )

where ≤ ≤α0 1 is the risk‐averse ratio. The risk‐averse ratio measures the degree of risk‐
aversion of a GSA member and controls the shape of the value function, and affects the optimal

FIGURE 4 The mean‐variance set of longevity hedge using S‐forwards for the GSA fund members. The
mean‐variance set shows a parabolic shape. GSA, group self‐annuities. [Color figure can be viewed at
wileyonlinelibrary.com]
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hedging strategy. A member with a low risk‐averse ratio puts more weight on the mean in the
mean‐variance trade‐off.

For a risk‐mitigating strategy, we use the VRR, which measures the proportional reduction
in the variance of the total survival benefit relative to the unhedged GSA survival benefit, to
evaluate the hedge effectiveness. The VRR is defined as:

≔







ϕ

B

B
ϕ ϕVRR ( ) 1 −

Var

Var [ ]
, for < .t t

t t
H

t t
t t

RN
+1
( )

+1

( )

The VRR lies between zero and one, and a VRR close to one means the hedge is more
effective in offsetting an unexpected mortality change in the fund population. However, since
we assume that the population basis risk exists, it is generally not possible to achieve a perfect
hedge with VRR= 1.

Similarly, we use the MRR to measure the extent to which a risk‐mitigating strategy reduces
the expected survival benefit. The MRR is defined as:


≔







ϕ

B

B
ϕ ϕMRR ( ) 1 −

[ ]
, for < .t t

t t
H

t t
t t

RN
+1
( )

+1

( )

The fund manager aims to find an optimal balance between the VRR and MRR, as members
prefer low variability and a high level of survival benefits. On the efficient set, as the hedge ratio
increases, both VRR and MRR increase. Members aim to minimize the variance term and
maximize the mean term in the value function, and the optimal value function V h( * )t t t

captures the optimal trade‐off between the increasing VRR and MRR given their risk prefer-
ence. While the value of the function may offer limited insight on its own, comparing value
functions across strategies provides more meaningful information. The value function can be
interpreted as a “utility function” used to select the optimal hedging strategy. For two hedging
strategies, ht

A and ht
B, members prefer strategy ht

A if

  ( ) ( )V h V h− < 0.t t
A

t t t
B

t

Members can also use the value function to decide whether to hedge or not. For a
risk‐mitigating strategy ht, a decrease in the optimal value function, that is,

  V h V( ) − (0 ) < 0,t t t t t

indicates that the benefit of hedging exceeds its cost and members gain from the longevity hedge.

4 | NUMERICAL RESULTS

This section provides illustrative numerical results for the dynamic longevity hedging strategy.
In Section 4.1, we describe the data and model assumptions for the numerical study. Section 4.2
presents the baseline results of the longevity hedge. Section 4.3 conducts sensitivity tests to
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highlight the robustness of the hedging strategy, where we change the reference age of the
S‐forwards, the time‐to‐maturity of the S‐forwards, the hedger's population, the risk‐free
interest rate, the pool size of the GSA fund, and the assumed mortality model.

4.1 | Data and assumption

In the numerical illustrations, we assume that the fund population of the GSA portfolio
(Population F ) is the England and Wales total population. The reference population of the
S‐forwards (Population R) is the United Kingdom total population. This assumption mimics the
reality that the fund population is a subset of a whole population and the choice of the two
populations is similar to the setting presented in Zhou and Li (2017). Mortality rates for the two
populations are assumed to follow the ACF model as presented in Section 2.1. The parameters
of the ACF model are calibrated to the unisex mortality data of the two populations aged 65–99
over the period 1966 to 2021.11,12 Mortality data are downloaded from Human Mortality
Database (2024) and smoothed using the weighted penalized regression spline method
provided in the demography package (Hyndman, 2023) in R. The smoothing step removes
the jaggedness of mortality between ages and ensures that mortality is an increasing function of
age in the range we consider. We use the first‐order singular value decomposition method
(Zhou & Li, 2017) to estimate the model parameters. The calibration of the ACF model is
presented in Appendix E. The assumption in Proposition 3.5 that Gx is positive for the two
populations aged 65–99 is satisfied. This is supported by the observation that the common
mortality trend for the two populations is improving over time.

We consider a homogeneous GSA pool and assume that the pool size is large, implying that
there is no small sample risk. The hedging horizon of the GSA fund is 35 years. In the
calculation of the annuity factors in Equation (8), we assume thatm m=x t t, 99, for ≥x 100, thus
there is no systematic longevity risk after age 100. Unless otherwise stated, we use the baseline
assumptions summarized in Table 1. The chosen risk loading parameter is equivalent to an
annual risk premium of 0.03% reported in Tang and Li (2021), where the risk premium of
S‐forwards is calibrated to the market data in the UK.

4.2 | Baseline results

To illustrate the mean‐variance trade‐off of the longevity hedge and how the risk‐averse ratio
affects the optimal hedge, as an example, we present the mean‐variance set and the optimal
hedging strategy at time zero in Figure 5. The mean‐variance trade‐off parameter, ϕt, controls
the shape of the value function, and members select the optimal hedging strategy on the
efficient set that minimizes the value function. Recall that individuals with a smaller value of ϕt
are more risk averse and care more about removing the payment variance than increasing the

11We performed robustness check, and the inclusion of the year 2022 (which reflects part of the COVID‐affected
mortality) or the exclusion of the mortality data during the COVID‐19 period does not materially change the main
findings of the paper. Due to space constraints, we do not include the detailed results in this section, which can be
provided upon request.
12We set the year 2021 as the base year (t = 0) for all forward simulations. The time‐varying indices K k,t t

F( ), and kt
R( ) are

calibrated using historical mortality data from 1966 to 2021.
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mean of the payment. As reflected in Figure 5a, when α = 1, members are fully risk averse and
the fund manager selects the global minimum variance point (GMVP) as the optimal hedging
strategy. In Panels (b)–(d), as members are less risk averse, we observe that the optimal hedging
strategy moves towards the one without hedge on the efficient set. We note that the value
function increases faster for a hedging strategy on the inefficient set, since given the same level
of variance reduction, the hedge has a larger negative impact on the mean.

TABLE 1 Baseline assumptions in the numerical study. The assumption of time‐to‐maturity of the
S‐forwards is the same as the assumption in Tan et al. (2022).

Age of the GSA members at the inception of the fund x 65

Initial contribution per member c $10,000

GSA payment frequency Yearlya

Risk‐free interest rate r f 1% per annum

Reference age of the S‐forwards xf 75

Time‐to‐maturity of the S‐forwards T* 10 years

Risk loading parameter λ 0.3%

aExisting risk‐pooling arrangements include the QSuper Lifetime Pension in Australia and the GuardPath Modern Tontine in
Canada have an annual benefit payment frequency.

FIGURE 5 The mean‐variance set and the value function at time t = 0 with selected values of the risk
aversion parameter α. [Color figure can be viewed at wileyonlinelibrary.com]
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We emphasize that in Proposition 3.12, the optimal hedge ratio, h*t , and the risk‐neutral
trade‐off parameter, ϕt

RN( ), are path‐dependent. The optimal solution depends on the latest

information available at time t , which is F N K k k{ , , , , }t t t t
F

t
R+ ( ) ( ) . A different mortality path may

lead to a different optimal solution. As a result, the hedge effectiveness measurements we
consider, which are VRR, MRR, and optimal value function, are also path‐dependent. To
compute these three metrics and quantify their uncertainty, we adopt the simulation proce-
dures as follows:

• First, we simulate M = 20, 0001 primary mortality paths for both populations.
• On each of these M1 outer paths, we simulate M = 20, 0002 conditional mortality paths and
compute the path‐dependent optimal hedging strategy using the numerical approximation
described in Remark 3.13, which involves evaluating conditional expectations, variances, and
covariances at each time point in Equation (14).

• This results in M1 estimates for the VRR, MRR, and the optimal value function at each time
point.

• We then compute 95% confidence intervals using the 2.5th and 97.5th empirical percentiles
of the M1 estimates.

We now assess the member's willingness to hedge longevity risk. An immediate observation
from Figure 6 is that ϕt

RN( ) shows a decreasing trend through time in general, indicating that
GSA members are more willing to hedge the systematic longevity risk when they are younger.
In Equation (8), the annuity factor is a sum of discounted survival probabilities. When mem-
bers are younger, there are more terms in the summation, and the annuity factor is more
sensitive to an unexpected change in the time‐varying indices in the ACF model. Meanwhile,
when members are younger, the hedging profits and the survival benefits are more correlated
and the hedge is more effective since population basis risk increases as age increases (see
Figure 7 and Table 2 in this subsection). Another observation is that ϕt

RN( ) is a decreasing
function of the death benefit payment ratio, β. When β increases, members leave less mortality
credit to the fund and the survival benefit, Bt, decreases (Olivieri et al., 2022). As a result, from
Equation (15) we know ϕt

RN( ) decreases since the covariance decreases. Members are more
willing to hedge longevity risk when the GSA fund pays less death benefit.

FIGURE 6 The mean of the risk‐neutral trade‐off parameter ϕt
RN( ) over time. [Color figure can be viewed at

wileyonlinelibrary.com]
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To measure how the longevity hedge can reduce the variance of the GSA survival benefits,
we show the VRR in Table 2 where we assume that the risk‐averse ratio α = 0.8 and the death
benefit payment ratio β = 0. The hedge is very effective in reducing the variance of the GSA
survival benefit by more than 90% on average in the first 20 years, and by more than 50% on
average in the following 10 years. In addition, in the first 20 years, the minimum VRR is greater
than 90% and the 95% confidence intervals are very tight. However, the hedge is less effective

FIGURE 7 The value of the population basis risk index It for t = 0, 1, …, 34. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 The variance and mean reduction ratios of the hedge at selected ages (α = 0.8 and β = 0).

Age Mean Minimum Maximum 95% confidence interval

Variance reduction ratio

65 95.89% 95.88% 95.90% (95.89%, 95.90%)

70 95.91% 95.88% 95.93% (95.90%, 95.92%)

75 95.95% 95.94% 95.96% (95.95%, 95.96%)

80 95.93% 95.92% 95.94% (95.93%, 95.94%)

85 94.78% 93.71% 95.41% (94.34%, 95.14%)

90 84.17% 81.76% 85.60% (83.24%, 84.93%)

95 50.09% 45.19% 53.71% (48.35%, 51.75%)

Mean reduction ratio

65 0.1729% 0.1726% 0.1731% (0.1728%, 0.1730%)

70 0.2037% 0.1918% 0.2124% (0.1989%, 0.2083%)

75 0.2306% 0.1980% 0.2664% (0.2146%, 0.2485%)

80 0.2617% 0.1905% 0.3678% (0.2247%, 0.3059%)

85 0.2913% 0.1934% 0.4402% (0.2391%, 0.3530%)

90 0.2943% 0.1630% 0.5773% (0.2213%, 0.3894%)

95 0.2678% 0.1461% 0.3992% (0.2136%, 0.3251%)
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when members are older. As shown in Appendix E, as age increases, the shape parameter Gx
decreases, while the shape parameters g

x
i( ) reflect an increasing trend. As a result, the popu-

lation basis index It increases as age increases, as reflected in Figure 7, and the population basis
risk plays an increasingly important role in the hedge. Mortality for the older population is less
sensitive to the common time‐varying index Kt. Then the hedging profit or loss P t

N

( )t

t

+1

+1

and the

survival benefit Bt+1 are less correlated and the hedge is less effective in smoothening the GSA
survival benefit. Since a longevity hedge reduces the mean of the survival benefit, Table 2 also
reports the MRR to help members assess the impact. As age increases, the MRR first increases
then decreases, with its magnitude broadly aligning with the risk loading charged on the
S‐forwards. From Equation (10), the MRR can be expressed as:












ϕ
h

B
ϕ ϕMRR ( ) = −

[ ]
, for < .t t

t t
P t

N

t t
t t

RN

( )

+1

( )

t

t

+1

+1

In this equation, ht decreases and  B[ ]t t+1 increases over time. Meanwhile, since the

number of surviving members Nt+1 decreases, 






t

P t

N

( )t

t

+1

+1
increases. As a result, MRR t exhibits

concavity over time.

As reflected in Table 2, the hedge reduces both the mean and variance of the survival benefit, as
indicated by the positive values of VRR and MRR. Given this trade‐off, members are naturally
concerned with whether the benefit of hedging outweighs its cost. To evaluate this, we compare the
optimal value function against the benchmark case without hedging. We highlight that a decrease
in the optimal value function indicates that the benefit of hedging exceeds its cost. Table 3 shows
the optimal value function with and without hedge when α = 0.8 and β = 0. We observe that the
hedge reduces the optimal value function significantly. It decreases by 63.93%, 63.94%, 63.97%,
63.95%, 63.17%, 56.05%, and 33.05%, at ages 65, 70, 75, 80, 85, 90, and 95, respectively. This confirms
that the benefit of variance reduction exceeds the cost of reduction in the mean. Meanwhile, when
members are younger, the hedge is more effective and they benefit more from the hedge.
Appendix C presents the hedging results when the S‐forwards are fairly priced. The key finding is
that the risk premium mainly increases MRR and has a minimal effect on VRR.

Figure 8 presents how the risk‐averse ratio, α, impacts the optimal hedge ratio, h*t , the VRR,
the MRR, and the optimal value function. In this figure, we show the mean curves and assume
that the death benefit payment ratio, β = 0. The optimal hedge ratio exhibits an increasing
pattern as α increases. As the members are more risk‐averse, they are more interested in reducing
the variance rather than increasing the mean in the optimization problem. Consequently, the
fund manager will use more S‐forwards to hedge longevity risk and the hedge is more effective in
reducing the payment variance. However, as shown in Panel (c), the negative effect of the benefit
increases as members become more risk averse and use more S‐forwards. In Panel (d), the
dashed and solid lines represent the value function without and with hedge, respectively. We
observe that the optimal value function decreases with the dynamic hedge. The optimal value
function exhibits a decreasing pattern as α increases. This confirms that in our numerical ex-
ample, for the risk‐mitigating strategies, as the hedge ratio increases, the reduction in variance
dominates the decrease in mean. Fixing the risk‐averse ratio, the optimal value function grows
faster and is closer to the benchmark line without hedge in the last 10 years. This is because the
longevity hedging strategy is less effective in reducing the variance in the last 10 years and
members benefit less from the hedge.
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Figure 9 presents the benefits profile under two mortality path simulations, assuming
α = 0.8 and β = 0. The benefits Bt+1 and Bt

H
+1
( ) are calculated one step ahead by fixing

F N K k*, , ,t t t t
F( ), and kt

R( ) at time t . As a result, the reported confidence intervals reflect one‐step‐
ahead uncertainty rather than uncertainty from time zero. The results show that the hedge has
a limited effect on the mean benefit, as indicated by the small MRR in Figure 8c. However, the
95% confidence intervals for Bt

H
+1
( ) are noticeably narrower than those for Bt+1, especially during

the first 25 years, confirming the hedge's effectiveness in stabilizing benefit payments.

4.3 | Robustness of the hedging strategy

This subsection conducts sensitivity tests to check the robustness of the dynamic hedging
strategy. In the sensitivity tests, we keep the risk‐averse ratio and the death benefit payment
ratio fixed at α = 1 and β = 0, respectively. We repeat the experiments in Section 4.2 under
alternative scenarios. In this subsection, all plots represent the mean value over time.

4.3.1 | Robustness to S‐forwards' reference age and time‐to‐maturity

In the baseline results, we present the effectiveness of the hedging strategy based on the 10‐year
S‐forwards referenced to the Population H aged 75. However, an S‐forward with a certain

TABLE 3 The impact of longevity hedge on the optimal value function at selected ages (α = 0.8 and β = 0).

Age Mean Minimum Maximum 95% confidence interval

Optimal longevity hedge

65 8.92 8.41 9.49 (8.67, 9.17)

70 9.40 5.15 18.77 (6.88, 12.55)

75 9.50 4.21 26.68 (6.09, 14.24)

80 9.58 4.10 24.37 (6.26, 14.13)

85 9.76 5.45 19.63 (7.18, 13.16)

90 12.63 3.89 43.67 (7.20, 21.05)

95 27.31 9.76 98.35 (16.12, 44.58)

Without longevity hedge

65 24.73 23.32 26.32 (24.05, 25.42)

70 26.06 14.28 52.04 (19.09, 34.81)

75 26.38 11.67 74.02 (16.91, 39.52)

80 26.59 11.37 67.59 (17.37, 39.21)

85 26.49 14.98 52.32 (19.63, 35.47)

90 28.74 8.95 96.75 (16.52, 47.43)

95 40.98 14.21 140.76 (24.19, 66.36)
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FIGURE 8 The impact of risk‐averse ratio α on the optimal hedge ratio h*t , the VRR, the MRR, and V h( *)t t ,
where we assume that β = 0. All curves represent the mean value. [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9 Survival benefit per member given two simulations of the mortality path. The solid and dashed
lines represent the mean and 95% confidence interval, respectively. The initial contribution per member is
$10,000. [Color figure can be viewed at wileyonlinelibrary.com]
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reference age and time‐to‐maturity may not be actively traded in the market. It is worthwhile to
check the robustness of the hedging strategy with a different reference age and time‐to‐maturity
of the S‐forwards.

To perform the analysis, we first fix the reference age at 75 and vary the time‐to‐maturity of
the S‐forwards by T* = 1, 4, 8, 12 years. Figure 10 presents the simulation results with different
maturities. We find that the longevity hedge remains effective for T* = 4, 8, 12 years, indicating
the robustness of the hedging strategy to the time‐to‐maturity of the S‐forwards. In contrast,
1‐year S‐forwards are significantly less effective, since the VRR is smaller and decreases to near
zero over time. This is because each S‐forward covers only a 1‐year window, whereas longevity
risk persists over a multi‐year horizon. Mortality trends between the fund and reference popu-
lations are more correlated over longer horizons, while short‐term fluctuations introduce more
basis risk over shorter horizons. A hedging instrument that focuses only 1 year ahead fails to
capture the long‐term nature of the systematic longevity risk. Therefore, longer‐dated S‐forwards
provide a more stable and effective hedge by covering risk over an extended period. This result
motivates the use of longer‐dated S‐forwards and the adoption of offset trading to close S‐forward
positions at year‐end under the yearly rolling hedging strategy (see Remark 3.3).

We then fix the time‐to‐maturity at 10 years and vary the reference age of the S‐forwards by
x = 65, 70, 85, 90f . Figure 11 depicts the simulation results with different reference ages, where
the observations are similar as in Figure 10. The results demonstrate that the dynamic hedging
strategy is quite robust to the S‐forwards' reference age. However, when the reference age of the

FIGURE 10 The impact of time‐to‐maturity on hedge effectiveness for T* = 1, 4, 8, 12 years. The reference
age x = 75f is kept fixed. [Color figure can be viewed at wileyonlinelibrary.com]
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S‐forwards is 90, the hedge becomes relatively less effective, as indicated by a lower VRR in Panel
(d) compared to the other cases. This is because the population basis risk index It increases
exponentially at older ages, as shown in Figure 7, leading to a weaker correlation between the
mortality of the reference population and that of the fund population. As such, the basis
risk between two populations becomes more pronounced, limiting the effectiveness of
S‐forwards. This highlights that the S‐forwards indexed to a population aged below 85 is pivotal in
the longevity hedging capital market.13 We leave hedging at very high ages for future research.

4.3.2 | Robustness to hedger's population

In the baseline results, the book population (Population F ) is the England and Wales total
population. Figure 12 shows the hedging results when the book population comes from other
parts of the UK (Northern Ireland or Scotland). The S‐forwards in the hedge are indexed to the
UK total population aged 75 with a 10‐year time‐to‐maturity. We observe that the VRR ranges
from 99% to 75% in the first 25 years. In addition, the optimal value function is consistently

FIGURE 11 The impact of reference age on hedge effectiveness for x = 65, 70, 85, 90f . The time‐to‐
maturity T* = 10 years is kept fixed. [Color figure can be viewed at wileyonlinelibrary.com]

13Similarly, in hedging longevity risk for a defined benefit pension provider, Zhou and Li (2017) report that the
longevity hedge is less effective when the reference age of the q‐forwards is over 80.
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smaller than the benchmark. The results highlight that the standardized longevity‐linked security
referenced to a nationwide population is effective in hedging longevity risk for large GSA funds.

4.3.3 | Robustness to interest rate risk

The GSA fund is naturally long‐dated with interest rate uncertainty being a key source of risk. For
shorter maturities in practice, interest rate risk is managed independently using interest rate deri-
vatives, such as interest rate swaps. This subsection quantifies how interest rate risk affects the
effectiveness of the longevity hedge. In the analysis, we assume that the optimal hedge ratio is derived
under the assumption that r = 1%f , but the realized interest rate is not the same as the assumption.
More specifically, we investigate hedge effectiveness under the following two scenarios:

• Scenario 1: The realized risk‐free interest rate is 0.1%, which is lower than the assumption.
• Scenario 2: The realized risk‐free interest rate is 3%, which is higher than the assumption.

Figure 13 confirms that the hedge remains quite effective when the realized interest rate
differs from the assumption within an absolute value of 2%, as the VRR is greater than 90% in
the first 20 years. Comparing the two panels, we observe that when the realized risk‐free interest
rate decreases, the hedge is relatively more effective as the VRR is larger. From Equation (8), the
annuity factor is more sensitive to a mortality change when the risk‐free interest rate is lower.
Consequently, survival payments and the profit or loss from the S‐forwards are more correlated,
and the longevity hedge becomes more effective. Moreover, in the last 5 years, when the realized
risk‐free interest rate increases, the optimal value function is closer to the benchmark line.
Following an increase in the risk‐free interest rate, the investment return increases, which
amplifies the benefit level and variance and makes the hedge less effective.

It is worth mentioning that interest rate risk is not a major concern for the proposed
dynamic hedging framework. First, it can be hedged directly using an interest rate
swap. Second, risk‐free interest rate adjustment is generally a slow process, and the dynamic
hedging framework is effective within a 2% (absolute) change in the risk‐free interest rate.
Unless some extreme events occur and the risk‐free interest rate changes sharply, the hedge

FIGURE 12 The impact of hedger's population on hedge effectiveness for the book population being the
Northern Ireland population or the Scotland population. The time‐to‐maturity T* = 10 years and the reference
age x = 75f are kept fixed. [Color figure can be viewed at wileyonlinelibrary.com]
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remains effective even when the hedger mis‐specifies the risk‐free interest rate. Third, GSA
members can include the latest information on the risk‐free interest rate to determine the
optimal hedge ratio for the next period thanks to the dynamic hedging mechanism.

4.3.4 | Robustness to pool size

In this subsection, we bring the small sample risk in the GSA pool. When the pool size is finite,
the realized mortality rate of the GSA pool may be different from its expectation and at time
t − 1, the number of survival members at the end of the period follows a binomial distribution:

( )N N S~ Binomial , (1) .t t x t t
F

−1 + −1, −1
( )

In computing the optimal hedge ratio, the fund manager needs to account for the additional
source of uncertainty in the number of survival members.

From Figure 14, we observe that as N0 decreases, the variance reduction decreases and the
hedge becomes less effective. This is due to the increase in the idiosyncratic mortality risk in
the GSA pool, and the hedging strategy is not designed for hedging the idiosyncratic mortality
risk. The findings align with Li and Hardy (2011) and Zhou and Li (2017), where longevity
hedging strategies for an annuity portfolio become less effective when the sample size
decreases. The impact of the small sample risk becomes material when the initial pool size is
less than 3000 and the VRRs are less than 90%. We highlight that even with a small initial
number of members, like 3000, the hedge can reduce the payment variance by 70%–95% in the
first 20 years, indicating that a significant portion of the longevity risk is removed.

4.3.5 | Robustness to model risk

In our context, model risk refers to the potential reduction in hedge effectiveness resulting from
using an inaccurate mortality model to determine the optimal hedging strategy. To illustrate

FIGURE 13 The impact of interest rate risk on hedge effectiveness for a 0.1% or 3% realized interest rate.
The time‐to‐maturity T* = 10 years, the reference age x = 75f , and the book population are kept fixed. [Color
figure can be viewed at wileyonlinelibrary.com]
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this, we examine the effectiveness of the hedging strategy when the “true” mortality model
differs from the “assumed” model, which is the ACF model. Specifically, we consider the
following two alternative “true” models, and assume that the fund manager selects the optimal
hedging strategy using the “assumed” model.

• Model 1: The multi‐population Lee‐Carter (M‐LC) model (Cairns et al., 2011). In the M‐LC
model, the mortality rate of Population i is specified as:

( )m a G klog = + + ϵ ,x t
i

x
i

x t
i

x t
i

,
( ) ( ) ( )

,
( )

where ax
i( ) and ϵx t

i
,
( ) have the same interpretation as in the ACF model. However, the two

populations share the same shape parameter Gx in the M‐LC model. We assume that the
reference population is the dominant population and that kt

R( ) follows a random walk with
drift. The fund population is linked to the reference population through the assumption that
the difference k k−t

R
t
F( ) ( ) follows a first‐order autoregressive process.

• Model 2: The multi‐population Cairns–Blake–Dowd (M‐CBD) model (Li et al., 2015). In the
M‐CBD model, the 1‐year death of Population i is expressed as:











q

q
k k x x k k x xlog

1 −
= * + * ( − ¯) + + ( − ¯) + ϵ ,

x t
i

x t
i t t t

i
t
i

x t
i,

( )

,
( ) 1, 2, 1,

( )
2,
( )

,
( )

where k* t1, and k* t2, are common time‐varying indices, k t
i
1,
( ) and k t

i
2,
( ) are population‐specific

time‐varying indices, x̄ is the average age in the data, and ϵx t
i
,
( ) is an error term. The common

time‐varying indices follow a bivariate random walk with drift, while each population‐
specific time‐varying index follows a first‐order autoregressive process.

We implement the following procedures to determine the hedge effectiveness:

• Simulate 20,000 mortality paths using the “true” model.

FIGURE 14 The impact of pool size on hedge effectiveness for a finite pool size with N =0 10,000, 5000,
3000, and 1000. The dashed line represents the case with no small sample risk. [Color figure can be viewed at
wileyonlinelibrary.com]
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• Calibrate the “assumed” model based on the simulated mortality realizations.
• Determine the optimal hedging strategy using Equation (14).
• Calculate the VRR.

Table 4 shows that the VRRs are very similar across different models. This highlights that the
hedge remains effective even when the actual mortality model differs from the one used by the
fund manager. The robustness of the dynamic hedging strategy suggests that the correlation
between the two populations' mortality trends is not highly sensitive to the choice of mortality
model. In particular, when the two populations are strongly correlated, especially within the age
group 65–85, their mortality rates tend to move together in the same direction regardless of the
chosen model. Furthermore, the dynamic hedging strategy can adapt to changing conditions, and
regular rebalancing helps correct for deviations, further improving its effectiveness. This confirms
and clarifies why the dynamic hedging strategy is immune to model risk to a large extent.

5 | GENERALIZATION TO HEDGING INVESTMENT RISK

The dynamic hedging framework above assumes that the GSA fund is fully invested in a
risk‐free bank account. Naturally, one might question whether the fund can manage invest-
ment risk and longevity holistically. This section aims to address this question.

To effectively manage the investment risk, the fund manager can employ a target volatility
investment strategy (Doan et al., 2018; Li et al., 2022; Olivieri et al., 2022). We assume that risk
management is performed sequentially, that is, the fund manager first sets a target volatility for the
investment risk, then hedges the systematic longevity risk. As highlighted in Section 1, retirees
prefer stable and sustained living benefits. The first step aims to enhance survival benefits by
implementing a target volatility strategy for enhancing the performance of the underlying GSA
fund. The second step aims to decrease the variance of survival benefits and make them smoother.

5.1 | The equity model

Let Yt be the stock price at time t and assume that this evolves according to the Heston
stochastic volatility model (Heston, 1993):

TABLE 4 The impact of model risk on the VRR at selected ages. The time‐to‐maturity T* = 10 years, the
reference age x = 75f , and the book population are kept fixed. All figures represent the mean value.

Age ACF M‐LC M‐CBD

65 99.88969% 99.88973% 99.88969%

70 99.90976% 99.91032% 99.90970%

75 99.94974% 99.95079% 99.94982%

80 99.92749% 99.92860% 99.92767%

85 98.75706% 98.72143% 98.74373%

90 88.00431% 87.66947% 87.95813%

95 53.11209% 52.18132% 53.03698%
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dY μY dt δ v Y dW δ v Y dW

dv κ θ v dt σ v Y dW

= + + 1 − ,

= ( − ) + ,

t t t t t t t t

t v v t v t t t

1 2 2

1

where μ and vt are the instantaneous return and variance of Yt , and Wt
1 and Wt

2 are two
independent standard Brownian motions. In the Heston stochastic volatility model, the
instantaneous variance vt follows a mean‐reverting process, where θv is the long‐term mean,
κv is the speed of mean reversion, and σv is the volatility. We require ≥κ θ σ2 v v v

2 to guarantee
vt is positive (Feller, 1951). Here, δ is the correlation between the stock price and variance
processes.

5.2 | Target volatility strategy

Several target volatility strategies have been proposed in literature (Doan et al., 2018; Li
et al., 2022; Olivieri et al., 2022) in response to the empirically observed low‐volatility anomaly:
stock return and volatility processes have a negative relationship14 (Ang et al., 2006). A low
market volatility environment is associated with a high market return, and the fund increases
market exposure. In contrast, a high market volatility environment is associated with a
low market return, and the fund decreases market exposure. The target volatility strategy sets a
target volatility for the fund. The fund manager forecasts market volatility and rebalances the
investment portfolio to maintain the volatility target. The market exposure at time t w, t, is
determined as:







w
σ

= min
TV

ˆ
, 1 ,t

t

where TV is the target volatility and σ̂t is the volatility estimate at time t . The fund
manager determines σ̂t from historical observations. In particular, this is determined by the
exponentially weighted moving average of the volatility (Olivieri et al., 2022):

σ ησ
η

t
Y Yˆ = ˆ +

1 −

Δ
(log( ) − log( )) ,t t t t t t+Δ

2 2
+Δ

2

where η is the rate of decay and t t+ Δ is the next rebalancing date. In Section 5.3, we consider
a weekly rebalancing frequency ( tΔ =

1

52
) and discretise the Heston stochastic volatility model

with a weekly time increment to implement the target volatility strategy.
Depending on the investment portfolio, the target volatility strategies can be classified into

two types:

14The inverse relationship between market volatility and expected returns can be attributed to the volatility feedback
effect in models where volatility is priced (Bekaert & Wu, 2000; Wu, 2001). According to this effect, an increase in
expected volatility increases the required risk premium. As investors anticipate higher compensation for bearing
additional risk, this leads to a drop in current asset prices and lower returns. In contrast, a decline in expected volatility
lowers the required premium and increases asset prices, resulting in higher returns.
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• Type A (Olivieri et al., 2022): The fund allocates a proportion wt into equity and w1 − t into
risk‐free bank account.

• Type B (Doan et al., 2018; Li et al., 2022): The fund invests fully in equity and allocates
another proportion w − 1t into the futures on equity.

Proposition 5.1. Assuming no market transaction costs, the two target volatility
strategies proposed in (Olivieri et al., 2022) and (Doan et al., 2018; Li et al., 2022) are
equivalent.

Proof. See Appendix A.5. □

We use the return per unit of risk, πt, which is expressed as:


π

B

B
=

[ ]

Std [ ]
,t

t

t

0

0

to measure the effectiveness of an investment strategy (Doan et al., 2018). A higher πt means
that an investment strategy is more effective. Since investment return and mortality are both
stochastic processes, they contribute to the variability of benefits. Let LONG t and INV t denote
the systematic longevity risk component and the investment risk component, respectively.
Since we assume that longevity and investment risks are independent, the total variance can be
decomposed as:

BVar [ ] = LONG + INV .t t t t+1

The risk decomposition method presented in Appendix D enables us to quantify the con-
tributions of equity and longevity risks in this equation. Due to the independence of the two
risks, the total variance reduction only comes from the dynamic hedging strategy. The VRR of
the dynamic hedging strategy is defined as:

≔







ϕ

B B
ϕ ϕVRR ( )

Var [ ] − Var

LONG
, for < .t t

t t t t
H

t
t t

RN
+1 +1

( )

( )

The other longevity hedging calculations in Section 3 remain the same.

5.3 | Numerical illustrations

In the numerical illustrations, we use the set of parameters in Table 5 for the Heston
stochastic volatility model and consider a weekly rebalancing frequency for the target
volatility strategy, while the dynamic longevity risk hedging strategy is annually re-
balanced. We adopt a weekly rebalancing frequency for the target volatility strategy because
the stock market is more liquid and supports more frequent trading. The other parameters
are the same as those in Table 1. The volatility target is equal to the volatility multiplier
times the long‐term mean of volatility, θv . To show the risk decomposition, as an example,

32 | SHEN ET AL.

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.70024 by John C

arroll U
niversity, W

iley O
nline L

ibrary on [06/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



we present the proportion of investment risk contribution at time one in Figure 15. Since
the longevity risk component is fixed, the proportion of investment risk contribution
increases as the volatility target increases. We have conducted a robustness check of the
dynamic hedging strategy regarding the choice of target volatility. The key findings in
Section 4 remain the same. Due to space constraints, we do not include detailed results of
the robustness check in this subsection.

Table 6 compares the return per unit of risk for the holistic management strategy, pure
target volatility (dynamic) strategy, and pure static investment strategy. The holistic strategy
manages longevity risk and investment risk together. To make a fair comparison, the static
investment strategy allocates a fixed proportion, which equals the volatility multiplier, into the
equity and the rest into the risk‐free bank account. We observe that the dynamic investment
strategy performs better than the static investment strategy in terms of the return per unit of
risk. The return per unit of risk decreases as the volatility multiplier increases. This is because
the fund return appreciates slower relative to the volatility, consistent with the findings in Doan
et al. (2018). When the fund jointly manages the investment and longevity risks (holistic
approach), the return per unit of risk increases since the longevity risk component can be
effectively removed through the dynamic hedge.

TABLE 5 Baseline assumptions of the Heston stochastic volatility model, where we use the same set of
parameters as presented in Olivieri et al. (2022).

Instantaneous return of the stock μ 0.0849

Speed of mean reversion κv 2

Long‐term mean of stock variance θv 0.0299

Volatility of stock variance σv 0.2

Correlation between stock and variance processes δ −0.4480

Rate of decay in volatility forecasting η 0.8

FIGURE 15 The proportion of investment risk contribution at time t = 1 with death benefit payment ratio
β = 0. [Color figure can be viewed at wileyonlinelibrary.com]
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6 | CONCLUSION

This paper presents a novel dynamic hedging framework of systematic longevity and invest-
ment risk for GSAs. To hedge longevity risk, we use a multi‐population mortality model (Li &
Lee, 2005) to allow for the population basis risk. The hedging instrument we consider is a
standardized longevity‐linked security, namely, the S‐forward. Unlike continuous‐time
dynamic hedging, our approach involves less frequent portfolio rebalancing, making it more
practical for implementation. In addition, the framework can be extended to other longevity
pooling products. Investment risk is managed using a target volatility strategy, which enhances
fund performance by leveraging the negative correlation between stock prices and variance.

For longevity risk hedging, we establish a mean‐variance trade‐off for GSA participants
and derive semi‐closed‐form solutions for the mean‐variance set and optimal hedge ratio.
To improve computational efficiency and avoid nested Monte Carlo simulations, we
approximate the spot survival probabilities following Cairns (2011). Numerical studies
reveal that the GSA fund contains more systematic longevity risk when members are
younger or the fund pays lower death benefits. Implementing the hedging strategy signif-
icantly reduces the payment variance and increases the effectiveness of GSAs in preserving
smooth income after retirement. Meanwhile, the proposed holistic approach, which man-
ages longevity and investment risks jointly, further enhances survival payments and makes
the risk‐pooling scheme more appealing. The proposed hedging strategy is robust across
different S‐forward reference ages, maturities, book populations, interest rate risks, GSA
pool sizes, and model risk.

Our study focuses on the mean‐variance trade‐off, with the minimum variance hedge ratio
emerging as a special case when the trade‐off parameter is zero. Future research could explore
alternative hedging objectives, such as maximizing the Sharpe ratio (Howard & D'Antonio, 1984;
Sharpe, 1994) or minimizing downside risk (Fishburn, 1977; Roy, 1952). While we assume the
availability of a single S‐forward, future extensions could consider dynamically trading multiple
S‐forwards to achieve a better mean‐variance trade‐off. Additionally, as population basis risk
increases with age, hedging becomes less effective for older members. Future work can inves-
tigate strategies to mitigate the residual systematic longevity risk within the GSA pool.

Finally, we emphasize that the pool size is not the only source of the idiosyncratic mortality
risk. Factors such as individual health and functional disability status play significant roles. For
example, Kabuche et al. (2024) propose a GSA scheme that shares mortality risk across multiple

TABLE 6 Return per unit of risk (πt) at selected ages for different volatility targets with risk‐averse ratio
α = 1 and death benefit ratio β = 0.

Age 75 80 85

Multiplier Holistic Dynamic Static Holistic Dynamic Static Holistic Dynamic Static

0.1 16.9801 16.9292 16.7084 13.4847 13.4442 13.2699 11.2608 11.2270 11.1032

0.3 6.4686 6.4492 6.3675 5.1337 5.1183 5.0661 4.3880 4.3748 4.3305

0.5 3.9130 3.9013 3.8403 3.1088 3.0994 3.0633 2.6227 2.6148 2.5932

0.7 2.8781 2.8694 2.7460 2.2578 2.2511 2.1577 1.9015 1.8958 1.8180

0.9 2.3677 2.3606 2.0907 1.8494 1.8438 1.6168 1.5479 1.5432 1.3488
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health states. A promising research direction would be to explore hedging strategies for GSAs
that incorporate individual health or functional disability risks.
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APPENDIX A: PROOFS

Proof of proposition 2.1

Proof. Using the tower property of conditional expectation, we have:
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Proof of proposition 3.5

Proof. Over the year t t[ , + 1), the hedging profit or loss, P t( )t+1 , and the 1‐year survival
probability of the members, S (1)x t t

F
+ ,
( ) , are correlated through the common time‐varying

index Kt+1 in the ACF model. Under the assumption thatG > 0x in the ACF model, when
there is a decrease in Kt+1, the mortality rate mx t

i
, +1
( ) decreases, since the following

relationship holds:

∂

∂

m

K
m G= > 0.

x t
i

t
x t
i

x
, +1
( )

+1
, +1
( )

This will cause an increase in P t( )t+1 and S (1)x t t
F
+ ,
( ) , which implies P t( )t+1 is a

decreasing function of Kt+1 and
S

1

(1)x t t
F
+ ,
( )

is an increasing function of Kt+1.

By applying the Fortuin–Kasteleyn–Ginibre inequality (Fortuin et al., 1971), we have
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where we use the result in Proposition 2.1 in the second inequality.
Then, if h > 0t , we have
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Similarly, the result for the other direction holds. □

Proof of proposition 3.8

Proof. From the proof of Proposition 3.5, we know:
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Consequently, by Equations (10) and (A1), we can rewrite


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H
+1
( ) into:

SHEN ET AL. | 39

 15396975, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jori.70024 by John C

arroll U
niversity, W

iley O
nline L

ibrary on [06/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 



 



 































































































































( )

B B
h P t

N S

B
h

N
B

P t

S

h

N

P t

S

B
B B

P t

S

B
P t

S

B B

P t

S

P t

S

A B A B A

Var = Var +
( )

(1)

= Var [ ] + 2 Cov ,
( )

(1)
+ Var

( )

(1)

= Var [ ] + 2
− [ ]

( )

(1)

Cov ,
( )

(1)

+
− [ ]

( )

(1)

Var
( )

(1)

= + + .

t t
H

t t
t t

t x t t
F

t t
t

t
t t

t

x t t
F

t

t
t

t

x t t
F

t t

t t
H

t t

t
t

x t t
F

t t
t

x t t
F

t t
H

t t

t
t

x t t
F

t
t

x t t
F

t t t
H

t t t
H

t

+1
( )

+1
+1

+ ,
( )

+1 +1
+1

+ ,
( )

2

2
+1

+ ,
( )

+1

+1
( )

+1

+1

+ ,
( )

+1
+1

+ ,
( )

+1
( )

+1

+1

+ ,
( )

2

+1

+ ,
( )

1, +1
( )

2

2, +1
( )

3,

(A2)

Note that Equation (A2) is a quadratic function of ht, applying the first‐order
condition with respect to ht yields:
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□

Proof of proposition 3.12

Proof. Since

 ≔







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H
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is the value function, the GSA members try to minimize. We use Equation (10) to write
the value function as:
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The value function is a quadratic function of ht and applying the first‐order condition
with respect to ht yields:
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Solving h ϕ*( ) = 0t t
RN( ) yields:
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□

Proof of proposition 5.2

Proof. Let Y t
f and T f be the price and maturity of the future on equity. No arbitrage

condition yields:

Y r Y= (1 + ) .t
f f T t

t
−f

Applying Itô's lemma, we obtain:
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The instantaneous return of the Type B strategy is:
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where the last line is the instantaneous return of the Type A strategy. This completes the
proof. □
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APPENDIX B: APPROXIMATION FOR SPOT SURVIVAL PROBABILITY

By Cairns (2011) and Zhou and Li (2017), the spot survival probability ( )p s K k, ,x t
i

t t
i

,
( ) ( ) in

Equation (4) can be determined as:

( )( ) ( )p s K k f s K k, , = Φ , , ,x t
i

t t
i

x t
i

t t
i

,
( ) ( )

,
( ) ( )

where ⋅Φ( ) is the standard normal distribution function and

≔ ( )( ) ( )f s K k p s K k, , Φ , ,
x t
i

t t
i

x t
i

t t
i

,
( ) ( ) −1

,
( ) ( )

is the probit transform of the spot survival probability.

Let ≔ K K Kˆ [ ]t t 0 and ≔ k k kˆ [ ˆ ˆ ]t
i

t
i i( ) ( )

0
( )

. Then f s K k( , , )
x t
i

t t
i

,
( ) ( ) can be approximated by its

second‐order Taylor series expansion f s K k˜ ( , , )
x t

i
t t

i
,

( ) ( ) around K k( ˆ , ˆ )t t
i( )

as:
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A key feature of the approximation method is that the partial derivatives γ s( )x t j
i
, ,
( ) for

j = 0, 1, …, 5 are independent of the realized mortality path. We first compute the partial
derivatives through finite difference approximation (Cairns, 2011), then use the partial deri-
vatives to approximate the spot survival probabilities to avoid nested Monte Carlo.

APPENDIX C: HEDGE EFFECTIVENESS WHEN S‐FORWARDS ARE
FAIRLY PRICED
This appendix presents the hedging results when the S‐forwards are fairly priced, that is, when
no risk premium is charged and λ = 0. Comparing Table C1 with the results in Table 2, the risk
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premium mainly increases MRR, while its effect on VRR is minimal. This is because the risk
premium reduces the hedging profit or loss P t( )t+1 linearly, and the correlation between P t

N

( )t

t

+1

+1

and Bt+1 remains unchanged. We also observe a decrease in the optimal value function in
Table C2, suggesting fund members benefit from the longevity hedge.

TABLE C1 The variance and mean reduction ratios of the hedge at selected ages (α β= 0.8, = 0,
and λ = 0).

Age Mean Minimum Maximum 95% confidence interval

Variance reduction ratio

65 95.90% 95.89% 95.90% (95.89%, 95.90%)

70 95.92% 95.89% 95.94% (95.91%, 95.93%)

75 95.95% 95.93% 95.96% (95.94%, 95.95%)

80 95.92% 95.91% 95.93% (95.92%, 95.93%)

85 94.75% 94.23% 95.01% (94.57%, 94.89%)

90 84.34% 82.76% 85.48% (83.73%, 84.92%)

95 49.68% 45.78% 53.05% (47.99%, 51.33%)

Mean reduction ratio

65 0.00031% 0.00029% 0.00033% (0.00030%, 0.00032%)

70 0.00047% 0.00027% 0.00079% (0.00036%, 0.00061%)

75 0.00071% 0.00032% 0.00145% (0.00049%, 0.00098%)

80 0.00103% 0.00043% 0.00225% (0.00068%, 0.00149%)

85 0.00142% 0.00068% 0.00285% (0.00097%, 0.00198%)

90 0.00163% 0.00076% 0.00333% (0.00114%, 0.00221%)

95 0.00134% 0.00080% 0.00205% (0.00107%, 0.00166%)

TABLE C2 The impact of longevity hedge on the optimal value function at selected ages (α β= 0.8, = 0,
and λ = 0).

Age Mean Minimum Maximum 95% confidence interval

Optimal longevity hedge

65 9.01 8.51 9.58 (8.76, 9.26)

70 9.15 5.11 15.34 (7.03, 11.75)

75 9.26 4.50 20.20 (6.31, 13.19)

80 9.67 3.72 27.90 (5.81, 15.18)

85 10.07 3.87 34.08 (5.99, 16.23)

90 12.71 3.76 50.92 (6.80, 21.85)

95 27.31 9.25 79.31 (16.09, 44.30)

(Continues)
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APPENDIX D: RISK DECOMPOSITION
This appendix presents a risk decomposition method. Let rt+1 be the investment return during
the period t t[ , + 1), the survival benefit at time t + 1 is expressed as:

B
F r

a N
(Θ ) =

(1 + )

¨
,t t

t t

x t t
e

t
+1 +1

+
+1

+ +1, +1 +1
(D1)

where ≔
⊤

( )K k rΘ , ,t t t
F

t+1 +1 +1
( )

+1 is the set of risks including the systematic longevity

risk { }K k,t t
F

+1 +1
( ) and the investment risk rt+1, and ⊤ is a transpose operator on a vector

or matrix.

Using the delta method (Oehlert, 1992), we can approximate the variance of B (Θ )t t+1 +1 as:

 ≈ ∇ ∇⊤ B B BVar [ (Θ )] (Θ) × Σ × (Θ) ,t t t t t t+1 +1 +1 Θ= (Θ ) +1 Θ= (Θ )t t t t+1 +1

where

∇

∂
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t t t
F

t t
F

t t
F

t

t t t t t
F

t t t

+1

+1 +1

+1

+1 +1

+1
( )
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Since the financial markets and the mortality dynamics are assumed to be independent, the
covariance matrix Σt can be simplified as:

TABLE C2 (Continued)

Age Mean Minimum Maximum 95% confidence interval

Without longevity hedge

65 24.97 23.58 26.57 (24.28, 25.66)

70 25.39 14.18 42.53 (19.52, 32.59)

75 25.70 12.49 56.03 (17.51, 36.59)

80 26.83 10.31 77.38 (16.13, 42.12)

85 27.32 10.56 91.65 (16.31, 43.91)

90 29.03 8.39 114.66 (15.48, 49.85)

95 40.80 13.78 115.90 (24.09, 65.78)
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
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By Equation (D1), the derivative ∂

∂

B

r

(Θ )t t

t

+1 +1

+1

can be calculated directly as:
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Then INV t can be determined as:


≔
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+1 Θ= (Θ )

2

+1

t t+1

and the systematic longevity risk component can be determined as:

BLONG = Var [ (Θ )] − INV ,t t t t t+1 +1

where we numerically evaluate the total variance BVar [ (Θ )]t t t+1 +1 .

APPENDIX E: ESTIMATES OF PARAMETERS IN THE ACF MODEL
Figure E1 depicts the parameter estimates for the ACF model. The time‐varying index Kt in the
common factor shows a decreasing trend, and mortality rates for the two populations are

FIGURE E1 The fitted ACF model for the unisex mortality data of the England and Wales total population
and the United Kingdom total population aged from 65 to 99 over the period from 1966 to 2021.
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improving. The shape parameter Gx in the common factor also shows a downward trend, and
the younger population gain more mortality improvement than the older population. Mean-
while, Gx is positive for the population aged from 65 to 99 and our assumption in Proposi-
tion 3.5 is satisfied. From the plots of the population‐specific time‐varying indices kt

F( ) and kt
R( ),

we observe a mean‐reverting trend. This property guarantees the mortality projections of the
two populations are coherent and do not diverge to infinity (Li & Lee, 2005).
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